Welcome!

Gary Kaiser

Subscribe to Gary Kaiser: eMailAlertsEmail Alerts
Get Gary Kaiser via: homepageHomepage mobileMobile rssRSS facebookFacebook twitterTwitter linkedinLinkedIn


Top Stories by Gary Kaiser

As a network professional, one of your newer roles is likely troubleshooting poor application performance. For most of us, our jobs have advanced beyond network "health," towards sharing - if not owning - responsibility for application delivery. There are many reasons for this more justifiable than the adage that the network is first to be blamed for performance problems. (Your application and system peers feel they are first to be blamed as well.) Two related influencing trends come to mind: Increased globalization, coupled with (in fact facilitated by) inexpensive bandwidth means that the network is becoming a more critical part of the business at the same time its constraint is shifting from bandwidth to latency. Many of the network devices - appliances - that sit in the path between remote offices and data centers are application-fluent, designed to enhance and... (more)

Understanding APM on the Network

In Part 6, we dove into the Nagle algorithm - perhaps (or hopefully) something you'll never see. In Part VII, we get back to "pure" network and TCP roots as we examine how the TCP receive window interacts with WAN links. TCP Window Size Each node participating in a TCP connection advertises its available buffer space using the TCP window size field. This value identifies the maximum amount of data a sender can transmit without receiving a window update via a TCP acknowledgement; in other words, this is the maximum number of "bytes in flight" - bytes that have been sent, are traver... (more)

Understanding Application Performance on the Network | Part 4

We know that losing packets is not a good thing; retransmissions cause delays. We also know that TCP ensures reliable data delivery, masking the impact of packet loss. So why are some applications seemingly unaffected by the same packet loss rate that seems to cripple others? From a performance analysis perspective, how do you understand the relevance of packet loss and avoid chasing red herrings? In Part II, we examined two closely related constraints - bandwidth and congestion. In Part III, we discussed TCP slow-start and introduced the Congestion Window (CWD). In Part IV, we'... (more)

Understanding Application Performance on the Network | Part 2

When we think of application performance problems that are network-related, we often immediately think of bandwidth and congestion as likely culprits; faster speeds and less traffic will solve everything, right? This is reminiscent of recent ISP wars; which is better, DSL or cable modems? Cable modem proponents touted the higher bandwidth while DSL proponents warned of the dangers of sharing the network with your potentially bandwidth-hogging neighbors. In this blog entry, we'll examine these two closely-related constraints, beginning the series of performance analyses using the ... (more)

Understanding Application Performance on the Network | Part 3

In Part II, we discussed performance constraints caused by both bandwidth and congestion. Purposely omitted was a discussion about packet loss - which is often an inevitable result of heavy network congestion. I'll use this blog entry on TCP slow-start to introduce the Congestion Window (CWD), which is fundamental for Part IV's in-depth review of Packet Loss. TCP Slow-Start TCP uses a slow-start algorithm as it tries to understand the characteristics (bandwidth, latency, congestion) of the path supporting a new TCP connection. In most cases, TCP has no inherent understanding of th... (more)